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The striatum, the principal input structure of the basal ganglia, is crucial to both motor control and
learning. It receives convergent input from all over the neocortex, hippocampal formation, amygdala
and thalamus, and is the primary recipient of dopamine in the brain. Within the striatum is a
GABAergic microcircuit that acts upon these inputs, formed by the dominant medium-spiny projection
neurons (MSNs) and fast-spiking interneurons (FSIs). There has been little progress in understanding
the computations it performs, hampered by the non-laminar structure that prevents identification of
a repeating canonical microcircuit. We here begin the identification of potential dynamically-defined
computational elements within the striatum. We construct a new three-dimensional model of the
striatal microcircuit’s connectivity, and instantiate this with our dopamine-modulated neuron models
of the MSNs and FSIs. A new model of gap junctions between the FSIs is introduced and tuned to
experimental data. We introduce a novel multiple spike-train analysis method, and apply this to the
outputs of the model to find groups of synchronised neurons at multiple time-scales. We find that,
with realistic in vivo background input, small assemblies of synchronised MSNs spontaneously appear,
consistent with experimental observations, and that the number of assemblies and the time-scale of
synchronisation is strongly dependent on the simulated concentration of dopamine. We also show that
feed-forward inhibition from the FSIs counter-intuitively increases the firing rate of the MSNs. Such small
cell assemblies forming spontaneously only in the absence of dopamine may contribute to motor control
problems seen in humans and animals following a loss of dopamine cells.

© 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

The striatum is a large subcortical nucleus that forms the prin-
cipal input structure of the basal ganglia. Diseases that directly af-
fect the striatum or its primary afferents - such as Huntington’s
or Parkinson’s disease - lead to profound deficits in motor con-
trol. In particular, loss of dopamine cells in Parkinson’s disease
and its animal models leads to motor symptoms of rigidity, aki-
nesia, and tremor (Ferro et al., 2005; Kirik, Rosenblad, & Bjork-
lund, 1998; Schwarting & Huston, 1996), and the striatum is the
main locus of dopamine’s action, containing the highest density
of dopamine receptors in the vertebrate brain (Dawson, Gehlert,
McCabe, Barnett, & Wamsley, 1986; Hurd, Suzuki, & Sedvall, 2001;
Richtand, Kelsoe, Segal, & Kuczenski, 1995). Moreover, an intact
dopamine system also seems to be critical for many forms of learn-
ing (Ferro et al., 2005; Whishaw & Dunnett, 1985), consistent with
reported correlations between dopamine cell firing and the predic-
tion error required by reinforcement learning theories (Redgrave
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& Gurney, 2006; Schultz, 2007). An intact striatum is similarly
required for successful acquisition of many instrumental condi-
tioning tasks (Yin & Knowlton, 2006). An understanding of the
striatum’s computational operation would thus shed light on a fun-
damental contributor to both motor control and learning.

Within the striatum lies a complex, predominantly GABAergic,
microcircuit (Bolam et al., 2006). Medium spiny projection neu-
rons (MSNs) are the only output neurons and comprise up to 95%
of the cell population in rats, with GABAergic and cholinergic in-
terneurons forming most of the remaining cell population. Despite
their comparatively small number, the GABAergic fast-spiking in-
terneurons (FSIs), in particular, exert a very strong influence on the
MSNs (Koos & Tepper, 1999), receive input from similar sources,
and are interconnected by both chemical synapses and gap junc-
tions. Dopamine has multiple effects on these neuron types, via
multiple receptor types: indeed, the exact effects of dopamine re-
ceptor activation on the MSN have been much debated (Surmeier,
Ding, Day, Wang, & Shen, 2007). Seemingly ideal for underpinning
its multiple functional roles, the striatum receives massive conver-
gent input from the neocortex, thalamus, hippocampal formation,
and amygdala (Glynn & Ahmad, 2002; Groenewegen, Wright, Bei-
jer, & Voorn, 1999; McGeorge & Faull, 1989; Smith, Raju, Pare, &
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Sidibe, 2004), and dopamine modulates the striatal neurons’ re-
sponses to them.

Despite, or perhaps due to, this complexity of structure and
input, there are few well-quantified theories of the striatum'’s
computational role. Many theories of striatal-specific or global
basal ganglia function draw explicit attention to the role of the
inhibitory local MSN collaterals as a substrate for competitive
dynamics (e.g. Beiser & Houk, 1998; Frank, 2005; Pennartz,
Groenewegen, & da Silva, 1994; Wickens, Alexander, & Miller,
1991), whether that competition be labelled ‘decision making’,
‘motor program selection’ or ‘pattern classification’. Wickens
and colleagues’ domain hypothesis is the most developed, and
proposes that the basic computational element of the striatum
is the set - or “domain” - of all MSNs that are mutual
inhibitory (see e.g. Alexander & Wickens, 1993; Wickens et al.,
1991; Wickens, Kotter, & Alexander, 1995). In simulation, they
have shown that winner-takes-all like competition occurs within a
single domain, while winners-share-all dynamics (multiple active
neurons) occur in networks composed of multiple overlapping
domains (Alexander & Wickens, 1993; Wickens et al., 1991).
Similar results have been obtained in analytical studies of general
mutually inhibitory neural networks (Fukai & Tanaka, 1997).

All such theories of competitive dynamics are faced by the
problems that the inhibition provided by the local MSN collaterals
is weak (Czubayko & Plenz, 2002; Jaeger, Hitoshi, & Wilson, 1994;
Koos, Tepper, & Wilson, 2004; Taverna, van Dongen, Groenewegen,
& Pennartz, 2004; Tunstall, Oorschot, Kean, & Wickens, 2002), so
that a single MSN is only contacted by between 12%-18% of MSNs
inits dendritic field (Tepper, Koos, & Wilson, 2004 ), and that mutual
inhibition is the exception rather than rule (Tepper et al., 2004;
Tunstall et al., 2002).

Some theories do predict such weak connections. Bar-Gad,
Morris, and Bergman (2003) have proposed that the striatum
compresses information relayed to it from the cortex, transmitting
back the compressed version via the basal ganglia output nuclei.
They noted that the two layer network formed by the striatum
and the output nuclei can be mapped to standard neural network
implementations of principal components analysis, and that
these require weak correlation in a layer corresponding to the
striatum. While an interesting hypothesis, this mapping does not
account for the microcircuit of the striatum, or the effects of the
numerous neuromodulators within it. Other models of the whole
basal ganglia circuit do not rely on the local collaterals within
the striatum for their computations, rather proposing that the
striatum is both an integrator of diverse cortical information and
a filter on weak cortical inputs, as the first stage of an input
selection mechanism implemented by the whole basal ganglia (as
opposed to just the striatum), (Gurney, Prescott, & Redgrave, 2001;
Humphries, Stewart, & Gurney, 2006) — but these models also do
not account for the striatal microcircuit.

Our aim is to find out what computations can be supported
by the intrinsic circuitry of the striatum, what - if any - “basic
computational elements” exist, and develop computational
theories of function on this basis. In particular, we wish to un-
derstand the role of the dominant GABAergic circuits of the stria-
tum: the rare, but powerful, FSIs, and the weak, asymmetrical, but
comparatively plentiful MSN local collaterals. Understanding the
contribution of all the striatum’s elements ideally requires large-
scale models (Djurfeldt, Ekeberg, & Lansner, 2008) that replicate
the neuron types, numbers, and connectivity at a one-to-one scale.
Such models can give deep insight into the role of each neuron class
in local circuit dynamics.

The purpose of this paper is twofold. First, we draw together, for
the first time, a series of techniques we have developed for lever-
aging anatomical and physiological constraint data, some of which
promise general applicability (beyond the striatum) in microcircuit

construction: (1) a powerful computational neuroanatomy method
for extracting the best connectivity statistics from impoverished
data; (2) the development of reduced models for dopamine mod-
ulation of striatal neurons, which replicate the output of detailed
compartmental models; and (3) a rigorous method for spike gener-
ation which allows good approximation to cortical input. We add
to these here by introducing: (1) a gap junction model tunable to
known membrane properties; (2) a principled method for param-
eterising the spike generation tool based on anatomical and phys-
iological data; and (3) a novel method for detecting patterns in
multi-unit activity at multiple time-scales, with general applica-
bility to simulation or experimental data.

Second, we begin the identification of computational ele-
ments within the striatum, and examine how these might support
hypotheses for competitive dynamics underpinned by the GABAer-
gic neurons of the striatum. Specifically, we construct a three-
dimensional model of the striatal microcircuit’s connectivity, and
instantiate this with our dopamine-modulated neuron models of
the MSNs and FSIs. We apply our multiple spike-train analysis
to the outputs of this model to find groups of synchronised neu-
rons at multiple time-scales. We then show that, with realis-
tic in vivo background input, small assemblies of synchronised
MSNs spontaneously appear, consistent with experimental obser-
vations (Carrillo-Reid et al., 2008), and that the number of assem-
blies and the time-scale of synchronisation is strongly dependent
on the simulated concentration of dopamine.

2. Creating the striatal microcircuit

Building large-scale models at up to 1:1 scale, neuron for neu-
ron, is an ambitious aim. In particular, as recognised by the Blue
Brain Project (Markram, 2006), these models are severely limited
by the need for accurate connectivity. There is a wealth of stud-
ies showing how the structure of a network is a strong determi-
nant of its dynamics (see e.g. Galan, 2008; Kwok, Jurica, Raffone,
& van Leeuwen, 2007; Nishikawa, Motter, Lai, & Hoppensteadt,
2003), and that the typical fall-back of completely regular or ran-
dom networks give false impressions about both synchronisation
and stability (see especially Lago-Fernandez, Huerta, Corbacho, &
Siguenza, 2000; Watts & Strogatz, 1998). It is thus imperative that
we begin from as accurate a network structure as possible.

2.1. The striatal microcircuit

First, we specify the GABAergic microcircuit of the stria-
tum (Tepper et al., 2004). Fig. 1 shows its complete set of con-
nections and neuron types; these are intermingled throughout
the non-laminar structure of the striatum. The MSNs number
around 2,790,000 in the rat, with a (shrinkage-corrected) density
0f 85,000 per mm?> (Qorschot, 1996). Various estimates have placed
this total as anything up to 95% of all neurons in the striatum (Ger-
fen & Wilson, 1996), though a figure of 90% is more commonly
quoted (Kawaguchi, Wilson, Augood, & Emson, 1995). The MSNs
can be split into two populations on the basis of their dominant
expression of either the D1 or D2 dopamine receptor, and these
populations are of roughly equal size. In addition to their long ax-
onal projections to targets in the pallidum (D2 MSNs) and substan-
tia nigra pars reticulata (D1 MSNs), both types have extensive local
axon collaterals, which ramify in approximately the same volume
as the parent neurons’ dendrites.

The physiological class of FSIs seem to correspond to the class
of parvalbumin-immunoreactive interneurons (Kawaguchi, 1993),
and these comprise around 3%-5% of the striatal cell population
in the rat (Kawaguchi et al,, 1995). Their axons remain wholly
in the striatum, and target both MSNs (Koos & Tepper, 1999)
and other FSIs (Kita, Kosaka, & Heizmann, 1990). In addition,
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Fig. 1. The striatal GABAergic microcircuit studied in this paper. Primary input
to the striatum comes from glutamatergic (GLU: e) fibres originating in the
neocortex, thalamus, hippocampal formation and amygdala, and dopaminergic
(DA: m) fibres originating in the hindbrain dopamine cell bands. All striatal axo-
dendritic connections (A) are GABAergic and hence inhibitory. The fast-spiking
interneurons (FSIs) can form dendro-dendritic gap junctions between them. The
medium spiny neuron (MSN) population can be divided in two on the basis of the
dominant dopamine receptor (D1 or D2) they express.

there are dendro-dendritic gap junctions between FSIs (Koos &
Tepper, 1999). Both MSNs and FSIs receive glutamatergic input
from cortical and thalamic sources, and dopaminergic input from
the hindbrain dopamine cell bands.

We focus on this microcircuit as the neuron types are the
best characterised (Tepper et al., 2004), but hence omit at least
two other physiological classes of interneuron found in the
striatum. The long-lasting hyperpolarisation class corresponds
to the large aspiny cholinergic interneurons (Kawaguchi, 1993).
We are focusing here on the short time-scale dynamics in the
striatum, which are thought to be dominated by the GABAergic
elements (Mallet, Le Moine, Charpier, & Gonon, 2005; Tepper
et al,, 2004). Future work on this circuit will incorporate the
cholinergic interneurons, as they may play a role in setting the
dynamic state of the striatal network (Wickens et al., 1991) and
their regulation of dopamine release affects plasticity at cortico-
striatal synapses (Wang et al., 2006; Zhou, Wilson, & Dani, 2002).
The low-threshold spiking class corresponds to the interneurons
that co-express nitric oxide, somatostatin, and neuropeptide
Y (Kawaguchi, 1993; Kawaguchi et al., 1995); this class may also
express GABA (Kubota & Kawaguchi, 2000). The FSIs probably
dominate MSN behaviour, as they form far more synapses on
somas (Kubota & Kawaguchi, 2000), whereas the low-threshold
spiking neurons may form an inhibitory network between the
cholinergic interneurons (Sullivan, Chen, & Morikawa, 2008).

2.2. The neuroanatomical model

We developed a novel computational neuroanatomy method
to build a three-dimensional model of the striatum that is as
accurate as possible given current neuroanatomical data (Wood,
Humphries, & Gurney, 2007). The strength of this method is that it
can be updated and re-run each time new relevant data becomes
available. We review the outline of the method and the results
essential for reconstructing the network used here.

Our approach builds on the underlying assumption that the
probability of connection between a given pair of neurons
is proportional to the distance between the cell bodies, and
the overlap of their neurites at that distance. For a standard
axo-dendritic synapse, the probability of connection is thus
proportional to the joint volume occupied by both the axonal field

Table 1

Parameters for the expected number of contacts between neuron pairs.
Connection o B y
MSN-MSN 0.5567 0.1212 0.008
FSI-MSN 0.5528 0.1184 0.0082
FSI-FSI 0.2216 0.083 0.008
FSI gap 0.2892 0.0099 0.0132

of the source neuron and the dendritic field of the target neuron.
However, like much neural tissue, detailed data on the dendrites,
axons, and their three-dimensional structure were not available for
the MSNs and FSls.

We thus developed the method outlined in Fig. 2. This method
relies on developing stochastic growth models for the dendrites
and axons of both MSNs and FSIs. For the dendritic trees, we
used an existing growth algorithm (Burke, Marks, & Ulfhake, 1992)
and found its parameters using a genetic algorithm search of a
fitness space defined by known parameters (e.g. number of branch
points) of the neuron type’s dendritic tree. For the axon, which
has a simpler structure, we created our own growth algorithm
based on known properties of MSN and FSI axons. By creating
models for the dendrite and axon structure, we had a full set of
data on the dendritic branches and axons at each distance from
the soma, including their approximate volume. Using the growth
algorithms, we produced a large number of dendritic trees and
axons to estimate the expected neurite volume.

Based on this, we could then compute the expected volume of a
sphere that was occupied by dendrite (or axon) at a given distance
from the cell body. Both MSNs (Wilson & Groves, 1980; Zheng &
Wilson, 2002) and FSIs (Kawaguchi, 1993; Koos & Tepper, 1999)
have approximately spherical dendritic and axonal fields, and so
we could compute the expected amount of neurite in all directions
— effectively modelling a mean-field dendrite or axon. Then, in
turn, we could compute the expected volume of overlap between
the spherical fields given the distance between cell bodies for each
connection type. For every 1 wm? voxel in this overlapping volume,
we computed the probability of its occupancy by both neurites
(axon and dendrite or dendrite and dendrite, depending on the
connection type) and thus the probability of a potential contact.
Summing over all voxels in the overlapping volume thus gave us
the expected number of contacts for each distance between cell
bodies.

2.3. Construction of the network

We found that the expected number of contacts between two
neurons, as a function of the distance ds between the two somas,
was well fitted by the truncated power law

Ec(dy) = ad;Pe™®7, (1)

for every connection type. Table 1 gives the specific parameter
values for each of the four connection types in the striatal
GABAergic microcircuit: between MSNs formed by the local
axon collaterals synapsing on MSN dendritic trees; FSI axonal
connections on MSN dendritic trees; FSI axonal connections on
FSI dendritic trees; and gap junctions between FSI dendritic trees.
Fig. 2f shows the four resulting functions.

We use these functions to construct our striatal network. First,
we specify the three dimensions of our simulated region of the
striatum. The resulting volume V mm? defines the number of neu-
rons (see Section 2.1): given the 85,000 MSNs per mm? (Oorschot,
1996) we get V x 85,000 MSNs, and 3% of this is added as
FSIs (Kawaguchi et al., 1995). All neurons are then randomly as-
signed a three-dimensional position within the defined volume,
with a minimum distance of 10 pm enforced.
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Fig. 2. Anatomy model construction. (a) We create complete dendrograms using
stochastic algorithms, bounded by known properties of the dendrites and axons.
This example shows all six dendrites of the complete dendrogram for one MSN.
(b) Each segment of each branch is modelled as a cylinder, whose diameter tapers
with distance from the soma — summing over all branches gives the total volume of
dendrite (or axon) at each distance from soma. (c) We then compute the proportion
of spherical volume occupied by dendrite (or axon) at each distance from the soma.
(d) Expected values for occupied volume are computed over many repetitions of
the growth algorithm. The result is a continuous function of volume occupancy
for each dendrite and axon type. (e) Volume of intersection of all dendrite and
axon fields found for each distance between somas; volume discretised into 1 wm?
voxels. (f) For each voxel, given its distance from the respective somas, we compute
the probability of intersection between fields (dendrite-axon or dendrite-dendrite)
from volume occupancy functions (in panel d). We then sum over all probabilities to
get the expected number of contacts between neuron pairs as a function of distance
between their somas. These are all functions of the form (1), with parameters given
in Table 1; we use these functions to construct our network.

For all pairs of neurons with potential connections we then ap-
ply (1) with the appropriate parameters from Table 1 for the con-
nection type (MSN-MSN local collaterals, FSI-MSN axo-dendritic,
FSI-FSI axo-dendritic, FSI-FSI dendro-dendritic gap junctions). As
shown in Fig. 2f, the expected number of connections was always
much less than one, and so we used these functions as giving the
probability of connection given the distance between somas — then
the total number of such connections in a sufficiently large net-
work would yield the same expected connection function. We have
successfully used this to build and run models up to 1 mm?, though
the models we use here are kept small so that a thorough analysis
of the outputs remains tractable.

3. Model neurons

The model striatal network forms the basis for our study of its
dynamics. If we are to build at such scales, we require individual
neuron models that are simple enough to be computationally
tractable, but sufficiently complex to capture key membrane
properties that contribute to the characteristic behaviour of a
neuron species. Our neuron model of choice is the recent canonical
spiking model of Izhikevich (2007), which has been employed in

some notably large-scale models (Izhikevich, Gally, & Edelman,
2004).

We previously extended these model neurons by incorporating
dopaminergic modulation of intrinsic and synaptic ion-channels,
which we review below. In this paper we extend the model further
by introducing a model of gap junctions between FSIs and tune
parameter values to data from gap-junction coupled cortical FSIs.

3.1. Reduced models of striatal neurons

In his recent book, Izhikevich (2007) gives a biophysical form
of his canonical model for spike generation. Given that v is the
membrane potential, and u is the contribution of the neuron class’s
dominant slow current, we have

Co=k(v—v)(v—v)—u+1I (2)
u=alb(v—ov)—ul, (3)
with reset condition

ifv > vpeak thenv <—c,u < u+d,

where C is capacitance, v; and v; are the resting and threshold
potentials, I is a current source, a is a time constant, and ¢
is the reset potential (i.e. the value of the membrane potential
immediately after an action potential is fired). Parameters k and
b are derived from the I-V curve of the neuron and d is tuned to
achieve the desired spiking behaviour. We solve all neuron models
using the forward Euler method with a time-step of 0.01 ms — this
small time-step is necessary because of the fast dynamics of the
FSI (Humphries & Gurney, 2007).

3.1.1. Dopamine-modulated MSNs

Izhikevich (2007) provided parameter values that modelled a
MSN response to current injection. We introduced a framework for
reformulating and extending this model to replicate the output of a
detailed dopamine-modulated multi-compartment model (Moyer,
Wolf, & Finkel, 2007) — see (Humphries et al., submitted for
publication) for details. The MSN population is split in two by
the expression of the dominant dopamine receptor type (D1 or
D2). These receptors have different affects on both intrinsic and
synaptic ion channels (see Surmeier et al., 2007, for review). We
express the relative level of dopamine receptor occupancy by the
parameters ¢; (for D1) and ¢, (for D2), normalised to the interval
[0,1]. We add dopaminergic modulation of intrinsic ion channels in
D1 MSNs by extending (2) to

Copy = k(vp1 — vr)(vp1 — V) —u 41+ P18pa(vp1 — Epa),  (4)

where the term ¢igpa(vpy — Epa) is sufficient to simulate
the hyperpolarising effect of D1 activation when at an already
hyperpolarised membrane potential, and the depolarising effect
of D1 activation when at an already depolarised membrane
potential (Surmeier et al., 2007).

For the D2 MSNs, we add dopaminergic modulation of intrinsic
ion channels by extending (2) to

Copy = k(1 — ag)(vp2 — vr)(vp2 — v) —u+1, (5)

where we only decrease k by a factor of (1 — «a¢,), which is
sufficient to model the increased sensitivity to injection current
following D2 activation (Moyer et al., 2007).

We model synaptic input to all the MSNs as

I= Iampa + B(U)Inrnda + Igaba—fs + Igaba—ms: (6)

where both Impa and Iymga are derived from cortical input,
Igabats from FSI input, and Igpa-ms from local MSN collaterals.
Each synaptic input of type z (ampa, nmda, gaba-fs,gaba-ms) is
modelled by

I, = gzhz(Ez - U)’ (7)
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Table 2
Intrinsic and synaptic parameters for the medium spiny neuron model. Dimensions
are given where applicable.

Table 3
Intrinsic and synaptic parameters for the fast spiking interneuron model. Dimen-
sions are given where applicable. n.d.: no data.

Parameter Value Source Parameter Value Source
C 50 pF Izhikevich (2007) a 0.2 Izhikevich (2007)
b —-20 ” b 0.025 ”
c —55mV d 0
Uy —80 mV k 1
Upeak 40 mV Upeak 25 mV
1.14 Humpbhries et al. (submitted for Up —55mV ”
publication) C 80 pF Tateno et al. (2004)
Uy —33.8mV ” c —60 mV ”
a 0.05 Ur —70 mV
d 377 Ve —50mV
o 0.03 n 0.1 fitted to Bracci and Panzeri (2006)
DA 22.7nS € 0.625 fitted to Gorelova et al. (2002)
Epa —68.4 mV Eampar Enmda 0 mV n.d.; set as for MSNs
,31 3.75 Egaba»fsa Egaba-ms —60 mV "
B 0.156 ” Tampa 6 ms
Eampa» Enmda 0 mV Moyer et al. (2007) Tgaba-fs 4 ms
Egaba-fs» Egaba-ms —60 mV ” Zampa 61 nS n.d.; tuned to achieve realistic firing rates
Tampa 6 ms (Section 5.2)
Tk 160 ms Zgaba-fs 20 nS n.d.; assumes equivalent effect of FSI-FSI
Tgaba-fs» Tgaba-ms 4 ms contacts as FSI-MSN contacts
Sampa 6.1 nS Humphries et al. (submitted for g 30 nS Section 3.1.3
publication) T 11 ms ”
&nmda 3.05nS "
8gaba-ms 4.36 nS . . . .
Zgaba-fs 21.8nS ~ 5x MSN conductance Koos et al. Following Izhikevich (2007), we use a nonlinear u term
(2004)
Mg?*1o 1 mM Jahr and Stevens (1990) if vgs < vy,

where g, is the maximum conductance and E, is the reversal

potential. We use the standard single exponential model of post-

synaptic currents

. —h,(t

A 0Y
Tz

and h,(t) < h,(t) +S(t)/1,, (8)

where 7, is the appropriate synaptic time constant, and S(t) is
the number of pre-synaptic spikes arriving at all the neuron’s
receptors of type z at time t. Finally, we have the term B(v)
that models the voltage-dependent magnesium plug in the NMDA
receptors (Moyer et al., 2007)

1
1+ M0 exp (—p - 0.062)

B(v) = (9)

where [Mg?*]o is the equilibrium concentration of magnesium
ions.

We add D1 receptor dependent enhancement of NMDA-evoked
EPSPs (Moyer et al., 2007) by

Ir?rhda = Inmda(1 + B1¢1), (10)

and we add D2 receptor dependent attenuation of AMPA-evoked
EPSPs (Moyer et al., 2007) by

I?rﬁpa = lampa(1 = B2¢b2), (11)

where 8; and B, are scaling coefficients determining the relation-
ship between dopamine receptor occupancy and the effect magni-
tude. All parameter values are given in Table 2.

3.1.2. Dopamine-modulated FSIs

The FSIs only express the D1-family of receptors on their mem-
branes (Centonze et al., 2003). We add D1-receptor modulation by
extending (2) to

Cogs = klves — ve(1 — )] (ves — vp) — ugs +1, (12)

where we increase the nominal resting potential v, by a factor
of (1 — n¢,), following experimental data from Bracci, Centonze,
Bernardi, and Calabresi (2002) and Centonze et al. (2003).

lirg = { Il (13)

a[b(vs — vp)® — ug], ifve > vy,

that enables the FSI model to show Type 2 dynamics, particularly
a non-linear step at the start of its current-frequency curve from 0
to around 15-20 spikes/s.

Synaptic input to the striatal FSIs predominantly activates
GABAa or AMPA receptors (Blackwell, Czubayko, & Plenz, 2003),
NMDA receptors are rare. The dendrodendritic gap junctions
provide a further source of “synaptic” current (Koos & Tepper,
1999). Thus the synaptic current contributions are

I = Iampa + Igaba + Igapv (14)

where we add D2-receptor dependent modulation of GABAergic
input (Bracci et al., 2002; Centonze et al., 2003) by

I;aba = IgabéI(l —€gn), (15)

where Igap, is derived from FSI input. All parameter values are given
in Table 3.

3.1.3. Tuning FSI gap junctions
A gap junction between FSIs i and j is modelled as a compart-
ment with voltage v}, which has dynamics

(16)

where 7 is a time constant for voltage decay, and v; and vj are the
membrane potentials of the FSI pair. The current introduced by that
cable to the FSI pair is then

B =g —v) [0 =g — v, (17)

where g is the effective conductance of the gap junction. The total
gap junction input Ig,, to an FSI is then the sum over all contribu-
tions I, .

We hand-tuned 7 and g using a pair of FSI models connected
by a gap junction. Our target data came from a study by Galarreta
and Hestrin (1999), in which a sinusoidal current at different
frequencies was injected into one of a gap-junction coupled pair
of cortical FSIs, and membrane voltages recorded from both: this
data is ideal as it provides both voltage coupling strength and
voltage phase-lag, which are affected by both g and 7. We injected

Ti; = (v — v) (v — vy),
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Fig. 3. Tuning the gap junction model. Galarreta and Hestrin (1999) injected a
sinusoidal current into a cortical FSI at various frequencies, and recorded from
another connected to it by a gap junction. They computed both the coupling ratio
(m) and phase lag (o) of the second neuron’s membrane potential with respect to the
injected neuron. We similarly connected a pair of model FSIs with our gap junction
model, injected a sinusoidal current into one, and hand-tuned the gap junction
parameters (g and ) to fit the data. A qualitatively good match was achieved by
the model for both coupling ratio (O) and phase lag (O).

a sinusoidal current I into one FSI with an amplitude of 400 pA at
different frequencies and computed the coupling coefficient (ratio
of maximum amplitudes in the membrane voltages of the two
neurons) and the phase-lag (voltage-peak offset as a function of
the injection current frequency). Fig. 3 shows we achieved a good
qualitative match to both coupling coefficient and phase-lag from
the experimental data, with t = 11 ms and g = 150 nS.

While this data-set was the most appropriate for tuning the gap
junction model, we cannot immediately use the value for g. Two
caveats have to be accounted for: first, that there is an unknown
number of other FSIs connected by gap junctions to the studied
pair; second, that the study was done in tissue from juvenile
rats, and so would over-express gap junctions (Belluardo et al.,
2000). Both of these would contribute to the decay of the coupling
coefficient. Thus, we find we need to re-scale g to account for
the approximate reduction in gap junctions in adult tissue and to
account for other connections. In further simulations we explored
fully-connected gap-junction networks of 3, 4 or 5 FSIs, as might be
found in juvenile tissue. We found that repeating the same paired
recording protocol in these networks did indeed predict a dramatic
reduction in g: the multiple gap junctions acted to reinforce the
effects of the injection current on the un-injected neuron. A five-
fold reduction to g = 30 nS produced an equivalent fit to the
data in Fig. 3 for all three networks, and so we used that figure
here. This is also consistent with the comparatively weak coupling
coefficients of 3% and 20% that have been reported for the few
gap junction coupled striatal FSIs recorded to date (Koos & Tepper,
1999).

3.2. Input to network

In addition to its synaptic connections defined by our network
model, each neuron received an external input representing its
cortical afferents. In many spiking neuron models, afferent input
is generated by a set of Poisson processes. However, for large-
scale models where each neuron receives hundreds or thousands
of afferent inputs, this becomes unfeasible because of the memory
requirements. Recently we have developed a series of tools
addressing just this problem, using a method that collapses many
afferent trains into an single equivalent spike-event count.

Each spike-event generator directly produces the spike-events
that occur across N afferents to the neuron. At each time-step At,
and given a mean spike rate r, we compute the probability of a
spike per afferent as p(s) = r At. The total number of spike-events

S at each time-step is then just drawn from a binomial distribution

S = B(N, p(s)). The resulting time-series of spike-events is equiv-

alent to the pooling of N spike trains modelled as independent re-

newal processes, the superset that includes Poisson processes.

We define N and r for the striatal network for the tonic back-
ground in vivo state, by combining data from anatomy and electro-
physiology:

1. In a recent organotypic cortico-striatal-nigral co-culture study,
Blackwell et al. (2003) reported that a striatal MSN receives
an average of around 800 synaptic events per second during
its depolarised (“up”) state, but they could not distinguish
excitatory and inhibitory potentials.

2. The ratio of asymmetric (putative excitatory):symmetric (all
others) synapses in rat striatum is ~3.9:1 (Ingham, Hood, Tag-
gart, & Arbuthnott, 1998).

3. If we conservatively assume that half the asymmetric synapses
are cortical in origin, then we have a ratio of 2:1 potentially ac-
tive synapses in the co-culture.

4, Assuming this corresponds (roughly) to the proportion of glu-
tamate:GABA activity, then cortical activity accounts for ~530
synaptic events per second.

5. Given the estimate of 4250 cortical inputs per MSN (Zheng &
Wilson, 2002), the average firing rate of those cortical neurons
is therefore ~0.12 spikes/s.

6. From in vivo extracellular recordings, we know that dedicated
cortico-striatal neurons tonically fire a maximum of 5 spikes/s
and pyramidal tract neurons with striatal collaterals tonically
fire around 15 spikes/s (Bauswein, Fromm, & Preuss, 1989;
Turner & DeLong, 2000). The former dominate in number over
the latter (Bauswein et al., 1989; Zheng & Wilson, 2002), sug-
gesting an overall mean rate around 2-5 spikes/s.

7. Taking the lower mean single neuron rate of 2 spikes/s, and the
estimate of 530 synaptic events per second, we see that just 265
active cortico-striatal neurons are required to achieve this — or
just 6% of the total afferent cortical population.

Overall then, tonic cortico-striatal activity sufficient to drive MSN
firing requires just N ~ 250 trains, at a rate of r >~ 2 spikes/s.
We hence use N = 250 and r = 1.9 spikes/s for the MSN input
throughout our simulations. In addition, we use the same N, r in
the spike-event generators for the FSIs, as there is no data on cor-
tical input to these neurons.

4. Detecting groups of synchronised cells in multi-unit data

We sought to identify potential candidates for the basic
computational elements of the striatum from the dynamics of
our large-scale models under background input. For our present
purposes, we wanted to find groups of co-active or mutually
antagonistic MSNs that could form the basis for competitive
dynamics within the striatum. In addition, we studied this input
regime to see if the reported striatal cell clusters, spontaneously
formed in vitro (Carrillo-Reid et al., 2008), could be identified in
our model. However, analysis methods suitable for exploratory
analysis of such large spike-train data-sets are lacking (Brown,
Kass, & Mitra, 2004). We therefore developed a new algorithm
for finding synchronised groups at multiple time-scales within a
multiple spike-train data-set.

Atits most general, our algorithm follows a two-step procedure.
First, some measure of correlation between each pair (or more)
of neurons is computed, resulting in a correlation matrix. Second,
some method acts on this matrix to identify “strong” spike-train
correlations within groups of neurons, thereby grouping the data-
set into sets of neurons whose output is more related to each
other than with the remaining neurons. A group is thus 3 or more
neurons that are co-correlated. With this in mind, we detail our
specific algorithm (our present choices for these two steps are
specified in the Appendix):






























